Signaling Pathway for Endothelin-1- and Phenylephrine-Induced cAMP Response Element Binding Protein Activation in Rat Ventricular Myocytes: Role of Inositol 1,4,5-Trisphosphate Receptors and CaMKII.
نویسندگان
چکیده
BACKGROUND/AIMS Endothelin-1 (ET-1) and the α1-adrenoceptor agonist phenylephrine (PE) activate cAMP response element binding protein (CREB), a transcription factor implicated in cardiac hypertrophy. The signaling pathway involved in CREB activation by these hypertrophic stimuli is poorly understood. We examined signaling pathways for ET-1- or PE-induced cardiac CREB activation. METHODS Western blotting was performed with pharmacological and genetic interventions in rat ventricular myocytes. RESULTS ET-1 and PE increased CREB phosphorylation, which was inhibited by blockade of phospholipase C, the extracellular-signal-regulated kinase 1/2 (ERK1/2) pathway, protein kinase C (PKC) or Ca2+-calmodulin-dependent protein kinase II (CaMKII). Intracellular Ca2+ buffering decreased ET-1- and PE-induced CREB phosphorylation by ≥80%. Sarcoplasmic reticulum Ca2+ pump inhibitor, inositol 1,4,5-trisphosphate receptor (IP3R) blockers, or type 2 IP3R (IP3R2) knock-out abolished ET-1- or PE-induced CREB phosphorylation. ET-1 and PE increased phosphorylation of CaMKII and ERK1/2, which was eliminated by IP3R blockade/knock-out or PKC inhibition. Activation of CaMKII, but not ERK1/2, by these agonists was sensitive to Ca2+ buffering or to Gö6976, the inhibitor of Ca2+-dependent PKC and protein kinase D (PKD). CONCLUSION CREB phosphorylation by ET-1 and PE may be mainly mediated by IP3R2/Ca2+-PKC-PKD-CaMKII signaling with a minor contribution by ERK1/2, linked to IP3R2 and Ca2+-independent PKC, in ventricular myocytes.
منابع مشابه
Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation.
Several lines of evidence indicate that increases in nuclear Ca(2+) have specific biological effects that differ from those of cytosolic Ca(2+), suggesting that they occur independently. The mechanisms involved in controlling nuclear Ca(2+) signaling are both controversial and still poorly understood. Using hypotonic shock combined with mechanical disruption, we obtained and characterized a fra...
متن کاملIsoproterenol potentiates α-adrenergic and muscarinic receptor-mediated Ca2+ response in rat parotid cells.
The effects of the cAMP pathway on the Ca2+ response elicited by phospholipase C-coupled receptor stimulations were studied in rat parotid cells. Although 1 μM isoproterenol (Iso) itself had no effect on the cytosolic Ca2+ concentration, the pretreatment with Iso potentiated Ca2+ responses evoked by phenylephrine. The potentiating effect of Iso was attributed to a shifting of the concentration-...
متن کاملActivation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons.
One of the important targets of dopamine D4 receptors in prefrontal cortex (PFC) is the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of D4 receptor activation on subcellular localization of CaMKII. We found that activation of D4 receptors, but not D2 receptors, induced a rapid translocation of alpha-CaMKII from cytosol to...
متن کاملActivation of NFATc1 is directly mediated by IP3 in adult cardiac myocytes.
The Ca(2+)-sensitive nuclear factor of activated T cell (NFAT) transcription factors are implicated in cardiac development and cellular remodeling associated with cardiac disease. In adult myocytes it is not resolved what specific Ca(2+) signals control the activity of different NFAT isoforms in an environment that undergoes large changes of intracellular Ca(2+) concentration with every heart b...
متن کاملFunctionally redundant control of cardiac hypertrophic signaling by inositol 1,4,5-trisphosphate receptors.
Calcium plays an integral role to many cellular processes including contraction, energy metabolism, gene expression, and cell death. The inositol 1, 4, 5-trisphosphate receptor (IP3R) is a calcium channel expressed in cardiac tissue. There are three IP3R isoforms encoded by separate genes. In the heart, the IP3R-2 isoform is reported to being most predominant with regards to expression levels a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2017